A PATHWAY TO NON-COMMUTATIVE GELFAND DUALITY

Simone Murro

Department of Mathematics University of Genoa

Conference

An Invitation to Derived Geometry

September 2024

 $\lceil N\delta AM \rceil$

MOTIVATIONS

In the beginning of 20th century

Why not gravity?

GOAL: A NEW DUALITY FOR NON-COMMUTATIVE RINGS

PLAN OF THE TALK

In this talk, we focus only on the construction of the spectrum:

(I) PROBLEMS IN CONSTRUCTING THE SPECTRUM

(II) DERIVED GEOMETRY: A NEW HOPE

(III) THE SPECTRUM OF A NON-COMMUTATIVE RING

(IV) FUTURE OUTLOOK

Work in progress with

F. Bambozzi (Padova), M. Capoferri (Heriot-Watt), K. Kremnizer (Oxford) F. Papallo (Genova), M. Vassallo (Genova)

THE FIRST DIFFICULTY: Reyes' no-go theorem

The first step is to define the spectrum of a ring. For a commutative complex C^* -algebra $\mathcal A$, it is possible to define the Gelfand spectrum

$$
\operatorname{Spec} \mathcal{A} := \text{Hom}_{\mathbb{C}\text{-Alg}}(\mathcal{A}, \mathbb{C}) + \text{weak *-topology}
$$

More generally, for a commutative ring $\mathcal R$

 $\text{Spec } R := \{\text{prime ideals}\} + \text{Zariski topology}.$

It would be natural to extend these definitions to the non-commutative setting

THEOREM [Reyes]: It does not exists spectrum functor satisfying (A) and (B)

THE SECOND DIFFICULTY: the choice of a good topology

The *Grothendieck topology* is a choice of morphisms on a category $\mathscr C$ that makes the objects of $\mathscr C$ act like the open sets of a topological space:

DEFINITION: A Grothendieck topology is the data of a family of covers s.t.

- if $V \simeq U$, then $\{V \rightarrow U\}$ is a cover;
- if $\{U_i \rightarrow U\}$ is a cover and $V \rightarrow U$ any morphism, then $\{V \times_U U_i \rightarrow V\}$ is a cover;
- if $\{U_i \rightarrow U\}$ is a cover and for each i, $\{V_{ii} \rightarrow U_i\}$ is a cover, then the composition ${V_{ii} \rightarrow U}$ is a cover.

EXAMPLE: Zariski topology for commutative rings

- open embeddings: $A \rightarrow B$ flat epimorphism of finite presentation
- covers: conservative family of open embeddings ${A \rightarrow B_i}$ i.e. the product functor $\mathsf{Mod}_A \to \prod_i \mathsf{Mod}_{B_i}$ is conservative

NO-GO : the pushouts of rings is given by the free product of rings, and this operation does not preserve flatness.

DERIVED GEOMETRY: a new hope

KEY FACT: A morphism $A \rightarrow B$ in CRings is a *Zariski localization* if and only if it is *homotopical epimorphism*, i.e. $B\otimes_{A}^{\mathbb{L}} B\simeq B$, of finite presentation Therefore, we work homotopy category of connective dg-algebras

Rings \longrightarrow HRings := Ho(DGA)^{\leq 0}

DEFINITION: We call formal homotopical Zarisky topology in HRings

- *open embedding: A* \rightarrow *B* homotopical epimorphism, i.e. $B *_{A}^{\mathbb{L}} B \simeq B$
- formal covers: conservative family of open embeddings ${A \rightarrow B_i}$ i.e. the product functor $\mathsf{HRings}_{A} \to \prod_{i} \mathsf{HRings}_{B_{i}}$ is conservative

THEOREM: The formal homotopical Zarisky topology is a Grothendieck topology

Is it compatible with classical algebraic geometry? YES!

[Chuang-Lazarev]: for a morphism $A \rightarrow B$ in Rings it is equivalent

$$
B\otimes^{\mathbb{L}}_{A} B \simeq B \quad \Longleftrightarrow \quad B*^{\mathbb{L}}_{A} B \simeq B
$$

Simone Murro (University of Genoa) [The Non-Commutative Spectrum](#page-0-0) Padova 2024 5/9

THE SPECTRUM OF A NON-COMMUTATIVE RING

To $R \in H$ Rings a topological space to $R \in H$ Rings, we need to identify open sets, as well intersections and unions.

First attempt: consider a complete join semi-lattice

- \bullet Loc $(R):=\{\text{hom. epi. w. domain }R\}$ $\quad \bullet$ $A\leq B \Leftrightarrow A\rightarrow B$ $\quad \bullet$ $A\vee B=A\ast^\mathbb{L}_RB$
- f Unfortunately, the ideals of $\mathsf{Our}(X) = \mathsf{Loc}(R)^\mathrm{op}$ do not form always a frame.

Second attempt: consider a posite, namely

 $(Loc(R), <)$ endowed with the formal homotopical Zariski topology

 $\sqrt{ }$ Dually, the ideals of Ouv (X) forms a frame, so can be seen as open sets! $\sqrt{0}$ uv (X) + topol. is equivalent to the site of a sober topological space Zarx.

<code>DEFINITION</code> : For any $R\in\mathsf{HRings}_{\mathbb{Z}}$, we call *non-commutative spectrum* $\text{Spec}^{\text{NC}}(R)$ the topological space equivalent to Zarx.

THEOREM: The non-commutative spectrum $Spec^{\mathbb{N}C}$: HRings_{π} \rightarrow Top is functorial.

EXAMPLES: commutative rings

- if K is a field, $Spec^{\text{NC}}(\mathbb{K}) = \star$
- if R is a discrete valuation ring, $\mathrm{Spec}^{\mathrm{NC}}(R) = \mathrm{Spec}_G(R)$
- for the ring of integers $\mathbb Z$

 $\mathsf{Loc}(R) \stackrel{1:1}{\longleftrightarrow} \{\mathbb{Z} \to \mathbb{Z}[S^{-1}],$ where S is a subset of primes of $\mathbb{Z}\}$

it turns out that Zar $_{\mathrm{Spec}(\mathbb{Z})}$ is a distributive lattice, where

$$
\operatorname{Spec}(\mathbb{Z}[S^{-1}]) \wedge \operatorname{Spec}(\mathbb{Z}[T^{-1}]) \cong \operatorname{Spec}(\mathbb{Z}[S^{-1}] \otimes_{\mathbb{Z}} \mathbb{Z}[T^{-1}]) \cong \operatorname{Spec}(\mathbb{Z}[(S \cup T)^{-1}])
$$

$$
\operatorname{Spec}(\mathbb{Z}[S^{-1}]) \vee \operatorname{Spec}(\mathbb{Z}[T^{-1}]) \cong \operatorname{Spec}(\mathbb{Z}[(S \cap T)^{-1}]).
$$

 $\text{Spec}^{\text{NC}}(\mathbb{Z}) = \{\text{the Stone-Cech compactification of } \mathbb{N} \text{ plus a generic point}\}\$

<code>PROPOSITION</code> : Let $A \in \mathsf{CRings}_R$ and suppose that all homotopical localizations of A are discrete. There exists a canonical map $\pi_A: \mathrm{Spec}^{\mathrm{NC}}_d(A) \to \mathrm{Spec}_G(A).$

EXAMPLES: non-commutative rings

- For the path algebra $R = \mathbb{K}[A_2]$ over \mathbb{K} of the A_2 quiver Loc $(R)\stackrel{1:1}{\longleftrightarrow}$ {correspond to indecomposable representations of $A_2\}$ $Spec^{NC}(R) = \{discrete topological space on three points\}$
- For the path algebra A of the Kronecker quiver $\star \rightrightarrows \star$

Loc $(R) \overset{1:1}{\longleftrightarrow} \{\mathcal{O}(n)$ and generalization closed subsets of $\mathbb{P}^1\}$

 $\mathrm{Spec}^{\texttt{NC}}(R)=\{\mathsf{copy\ of\ }{\mathbb P}^1, \text{ closed points corresponding to } O(n), \text{ a generic point}\}$

FUTURE OUTLOOK

To get Gelfand's duality we would like to upgrade the construction of

 $\mathrm{Spec}^\texttt{NC}$: $\textsf{HRings} \to \textsf{Top}$

to some sort of homotopically ringed space.

The main complication comes from the fact that the base change of algebras and the base change of modules do not agree: for $A \to B$ localization, $(-) \ast^\mathbb{L}_A B$ and $(-) \otimes^\mathbb{L}_A B$ are not the same.

Therefore, the natural definition of the structure pre-sheaf (i.e. that to a localization $A \rightarrow B$ associates B) does not give a sheaf.

But still, there is descent for modules and we can always reconstruct any $M \in HMod_A$ via the Amistur complex associated with the any cover.

Once this is properly developed we should get Gelfand's duality.

THANKS for your attention!