A PATHWAY TO NON-COMMUTATIVE GELFAND DUALITY

Simone Murro

Department of Mathematics University of Genoa

Conference

An Invitation to Derived Geometry

September 2024

[INδAM]

MOTIVATIONS

In the beginning of 20th century

Why not gravity?

GOAL: A NEW DUALITY FOR NON-COMMUTATIVE RINGS

PLAN OF THE TALK

In this talk, we focus only on the construction of the spectrum:

- (I) PROBLEMS IN CONSTRUCTING THE SPECTRUM
- (II) DERIVED GEOMETRY: A NEW HOPE
- (III) THE SPECTRUM OF A NON-COMMUTATIVE RING

(IV) FUTURE OUTLOOK

Work in progress with

F. Bambozzi (Padova), M. Capoferri (Heriot-Watt), K. Kremnizer (Oxford) F. Papallo (Genova), M. Vassallo (Genova)

THE FIRST DIFFICULTY: Reyes' no-go theorem

The first step is to define the **spectrum** of a ring. For a <u>commutative</u> complex C^* -algebra \mathcal{A} , it is possible to define the Gelfand spectrum

$$\operatorname{Spec} \mathcal{A} := \operatorname{\mathsf{Hom}}_{\mathbb{C}\operatorname{-Alg}}(\mathcal{A}, \mathbb{C}) + \operatorname{weak} *\operatorname{-topology}$$

More generally, for a commutative ring \mathcal{R}

Spec $\mathcal{R} := \{ \text{prime ideals} \} + \text{Zariski topology} .$

It would be natural to extend these definitions to the non-commutative setting

THEOREM [Reyes]: It does not exists spectrum functor satisfying (A) and (B)

THE SECOND DIFFICULTY: the choice of a good topology

The *Grothendieck topology* is a choice of morphisms on a category \mathscr{C} that makes the objects of \mathscr{C} act like the open sets of a topological space:

DEFINITION: A Grothendieck topology is the data of a family of covers s.t.

- if $V \simeq U$, then $\{V \rightarrow U\}$ is a cover;
- if $\{U_i \rightarrow U\}$ is a cover and $V \rightarrow U$ any morphism, then $\{V \times_U U_i \rightarrow V\}$ is a cover;
- if $\{U_i \rightarrow U\}$ is a cover and for each *i*, $\{V_{ij} \rightarrow U_i\}$ is a cover, then the composition $\{V_{ij} \rightarrow U\}$ is a cover.

EXAMPLE: Zariski topology for commutative rings

- open embeddings: $A \rightarrow B$ flat epimorphism of finite presentation
- covers: conservative family of open embeddings $\{A \rightarrow B_i\}$ i.e. the product functor $Mod_A \rightarrow \prod_i Mod_{B_i}$ is conservative

NO-GO: the pushouts of rings is given by the free product of rings, and this operation does not preserve flatness.

Simone Murro (University of Genoa)

DERIVED GEOMETRY: a new hope

KEY FACT: A morphism $A \to B$ in CRings is a *Zariski localization* if and only if it is *homotopical epimorphism*, i.e. $B \otimes_A^{\mathbb{L}} B \simeq B$, of finite presentation Therefore, we work homotopy category of connective dg-algebras

Rings \longrightarrow HRings := Ho(DGA)^{≤ 0}

DEFINITION: We call formal homotopical Zarisky topology in HRings

- open embedding: $A \to B$ homotopical epimorphism, i.e. $B *_A^{\mathbb{L}} B \simeq B$
- formal covers: conservative family of open embeddings $\{A \rightarrow B_i\}$ i.e. the product functor $\operatorname{HRings}_A \rightarrow \prod_i \operatorname{HRings}_{B_i}$ is conservative

THEOREM: The formal homotopical Zarisky topology is a Grothendieck topology

Is it compatible with classical algebraic geometry? YES!

[Chuang-Lazarev]: for a morphism $A \rightarrow B$ in Rings it is equivalent

$$B \otimes_A^{\mathbb{L}} B \simeq B \iff B *_A^{\mathbb{L}} B \simeq B$$

Simone Murro (University of Genoa)

The Non-Commutative Spectrum

THE SPECTRUM OF A NON-COMMUTATIVE RING

To $R \in$ HRings a topological space to $R \in$ HRings, we need to identify open sets, as well intersections and unions.

First attempt: consider a complete join semi-lattice

- Loc(R) := {hom. epi. w. domain R} A \le B \Leftrightarrow A \to B A \lor B = A *_R^{\mathbb{L}} B
- ℓ Unfortunately, the ideals of $Ouv(X) = Loc(R)^{op}$ do not form always a frame.

Second attempt: consider a posite, namely

 $(Loc(R), \leq)$ endowed with the formal homotopical Zariski topology

✓ Dually, the ideals of Ouv(X) forms a frame, so can be seen as open sets! ✓ Ouv(X) + topol. is equivalent to the site of a sober topological space Zar_X.

DEFINITION: For any $R \in \text{HRings}_{\mathbb{Z}}$, we call *non-commutative spectrum* Spec^{NC}(R) the topological space equivalent to Zar_X .

THEOREM: The non-commutative spectrum $\operatorname{Spec}^{\operatorname{NC}}$: $\operatorname{HRings}_{\mathbb{Z}} \to \operatorname{Top}$ is functorial.

EXAMPLES: commutative rings

- if \mathbb{K} is a field, $\operatorname{Spec}^{\operatorname{NC}}(\mathbb{K}) = \star$
- if R is a discrete valuation ring, $\operatorname{Spec}^{\operatorname{NC}}(R) = \operatorname{Spec}_{G}(R)$
- $\bullet\,$ for the ring of integers $\mathbb Z$

 $Loc(R) \stackrel{1:1}{\longleftrightarrow} \{\mathbb{Z} \to \mathbb{Z}[S^{-1}], \text{ where } S \text{ is a subset of primes of } \mathbb{Z}\}$

it turns out that $\mathsf{Zar}_{\operatorname{Spec}(\mathbb{Z})}$ is a distributive lattice, where

$$\begin{split} \operatorname{Spec}(\mathbb{Z}[S^{-1}]) \wedge \operatorname{Spec}(\mathbb{Z}[T^{-1}]) &\cong \operatorname{Spec}(\mathbb{Z}[S^{-1}] \otimes_{\mathbb{Z}} \mathbb{Z}[T^{-1}]) \cong \operatorname{Spec}(\mathbb{Z}[(S \cup T)^{-1}]) \\ &\operatorname{Spec}(\mathbb{Z}[S^{-1}]) \vee \operatorname{Spec}(\mathbb{Z}[T^{-1}]) \cong \operatorname{Spec}(\mathbb{Z}[(S \cap T)^{-1}]). \end{split}$$

 $\operatorname{Spec}^{\operatorname{NC}}(\mathbb{Z}) = \{ \text{the Stone-Cech compactification of } \mathbb{N} \text{ plus a generic point} \}$

PROPOSITION: Let $A \in \text{CRings}_R$ and suppose that all homotopical localizations of A are discrete. There exists a canonical map $\pi_A : \text{Spec}_{\mathcal{C}}(A) \to \text{Spec}_{\mathcal{G}}(A)$.

EXAMPLES: non-commutative rings

- For the path algebra R = K[A₂] over K of the A₂ quiver Loc(R) ↔ {correspond to indecomposable representations of A₂} Spec^{NC}(R) = {discrete topological space on three points}
- For the path algebra A of the Kronecker quiver $\star \rightrightarrows \star$

 $Loc(R) \stackrel{1:1}{\longleftrightarrow} \{\mathcal{O}(n) \text{ and generalization closed subsets of } \mathbb{P}^1\}$

 $\operatorname{Spec}^{\mathbb{NC}}(R) = \{ \operatorname{copy of} \mathbb{P}^1, \operatorname{closed points corresponding to } O(n), a generic point \}$

FUTURE OUTLOOK

To get Gelfand's duality we would like to upgrade the construction of

 $\operatorname{Spec}^{\tt NC}\colon {\sf HRings}\to {\sf Top}$

to some sort of homotopically ringed space.

The main complication comes from the fact that the base change of algebras and the base change of modules do not agree: for $A \to B$ localization, $(-) *_A^{\mathbb{L}} B$ and $(-) \otimes_A^{\mathbb{L}} B$ are not the same.

Therefore, the natural definition of the structure pre-sheaf (i.e. that to a localization $A \rightarrow B$ associates B) does not give a sheaf.

But still, there is descent for modules and we can always reconstruct any $M \in HMod_A$ via the Amistur complex associated with the any cover.

Once this is properly developed we should get Gelfand's duality.

THANKS for your attention!