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MOTIVATIONS

In the beginning of 20th century

CLASSICAL MECHANICS QUANTUM MECHANICS

f , g ∈ C∞(T∗M) q = q∗, p = p∗ ∈ L(H)

[f , g ] = 0 [f, g] = ı~σ(f, g) 1

~→ 0

Q~

Why not gravity?

CLASSICAL SPACETIME QUANTUM SPACETIME

C∞-Manifolds ?

h

h

Comm. C∞-Algebra Noncomm. C∞-Algebra

~→ 0

Q~

Q~

~→ 0

Gelfand duality noncomm duality

GOAL: A NEW DUALITY FOR NON-COMMUTATIVE RINGS
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PLAN OF THE TALK

In this talk, we focus only on the construction of the spectrum:

(I) PROBLEMS IN CONSTRUCTING THE SPECTRUM

(II) DERIVED GEOMETRY: A NEW HOPE

(III) THE SPECTRUM OF A NON-COMMUTATIVE RING

(IV) FUTURE OUTLOOK

Work in progress with
F. Bambozzi (Padova), M. Capoferri (Heriot-Watt), K. Kremnizer (Oxford)

F. Papallo (Genova), M. Vassallo (Genova)
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THE FIRST DIFFICULTY: Reyes’ no-go theorem

The first step is to define the spectrum of a ring. For a commutative complex
C∗-algebra A, it is possible to define the Gelfand spectrum

SpecA := HomC-Alg(A,C) + weak ∗-topology

More generally, for a commutative ring R

SpecR := {prime ideals}+ Zariski topology .

It would be natural to extend these definitions to the non-commutative setting

Rings Top

CRings

SpecNC

Spec
(A) (B) SpecNC(A) = ∅ if and only if A = 0

THEOREM [Reyes]: It does not exists spectrum functor satisfying (A) and (B)

Simone Murro (University of Genoa) The Non-Commutative Spectrum Padova 2024 3 / 9



THE SECOND DIFFICULTY: the choice of a good topology

The Grothendieck topology is a choice of morphisms on a category C that
makes the objects of C act like the open sets of a topological space:

DEFINITION: A Grothendieck topology is the data of a family of covers s.t.

- if V ' U, then {V → U} is a cover;

- if {Ui → U} is a cover and V → U any morphism, then {V ×U Ui → V } is
a cover;

- if {Ui → U} is a cover and for each i , {Vij → Ui} is a cover, then the
composition {Vij → U} is a cover.

EXAMPLE: Zariski topology for commutative rings

- open embeddings: A→ B flat epimorphism of finite presentation

- covers: conservative family of open embeddings {A→ Bi} i.e. the product
functor ModA →

∏
i ModBi is conservative

NO-GO : the pushouts of rings is given by the free product of rings, and
this operation does not preserve flatness.

Simone Murro (University of Genoa) The Non-Commutative Spectrum Padova 2024 4 / 9



DERIVED GEOMETRY: a new hope

KEY FACT: A morphism A→ B in CRings is a Zariski localization if and only if
it is homotopical epimorphism, i.e. B ⊗L

A B ' B, of finite presentation
Therefore, we work homotopy category of connective dg-algebras

Rings HRings := Ho(DGA)≤0

DEFINITION: We call formal homotopical Zarisky topology in HRings

- open embedding: A→ B homotopical epimorphism, i.e. B ∗LA B ' B

- formal covers: conservative family of open embeddings {A→ Bi} i.e. the
product functor HRingsA →

∏
i HRingsBi

is conservative

THEOREM: The formal homotopical Zarisky topology is a Grothendieck topology

Is it compatible with classical algebraic geometry? YES!

[Chuang-Lazarev]: for a morphism A→ B in Rings it is equivalent

B ⊗L
A B ' B ⇐⇒ B ∗LA B ' B
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THE SPECTRUM OF A NON-COMMUTATIVE RING

To R ∈ HRings a topological space to R ∈ HRings, we need to identify open
sets, as well intersections and unions.

First attempt: consider a complete join semi-lattice

• Loc(R) := {hom. epi. w. domain R} • A ≤ B ⇔ A→ B • A ∨ B = A ∗LR B

E Unfortunately, the ideals of Ouv(X ) = Loc(R)op do not form always a frame.

Second attempt: consider a posite, namely

(Loc(R),≤) endowed with the formal homotopical Zariski topology

X Dually, the ideals of Ouv(X ) forms a frame, so can be seen as open sets!
X Ouv(X ) + topol. is equivalent to the site of a sober topological space ZarX .

DEFINITION: For any R ∈ HRingsZ, we call non-commutative spectrum
SpecNC(R) the topological space equivalent to ZarX .

THEOREM: The non-commutative spectrum SpecNC : HRingsZ → Top is functorial.
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EXAMPLES: commutative rings

• if K is a field, SpecNC(K) = ?

• if R is a discrete valuation ring, SpecNC(R) = SpecG (R)

• for the ring of integers Z

Loc(R) 1:1←→ {Z→ Z[S−1], where S is a subset of primes of Z}

it turns out that ZarSpec(Z) is a distributive lattice, where

Spec(Z[S−1])∧Spec(Z[T−1]) ∼= Spec(Z[S−1]⊗ZZ[T−1]) ∼= Spec(Z[(S∪T )−1])

Spec(Z[S−1]) ∨ Spec(Z[T−1]) ∼= Spec(Z[(S ∩ T )−1]).

SpecNC(Z) = {the Stone-Cech compactification of N plus a generic point}

PROPOSITION: Let A ∈ CRingsR and suppose that all homotopical localizations
of A are discrete. There exists a canonical map πA : SpecNC(A)→ SpecG (A).
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EXAMPLES: non-commutative rings

• For the path algebra R = K[A2] over K of the A2 quiver

Loc(R) 1:1←→ {correspond to indecomposable representations of A2}
SpecNC(R) = {discrete topological space on three points}

• For the path algebra A of the Kronecker quiver ?⇒ ?

Loc(R) 1:1←→ {O(n) and generalization closed subsets of P1}

. . . . . .
O(−1) O(0) O(1) O(2)

P1
k

SpecNC(R) = {copy of P1, closed points corresponding to O(n), a generic point}
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FUTURE OUTLOOK

To get Gelfand’s duality we would like to upgrade the construction of

SpecNC : HRings→ Top

to some sort of homotopically ringed space.

The main complication comes from the fact that the base change of algebras
and the base change of modules do not agree:
for A→ B localization, (−) ∗LA B and (−)⊗L

A B are not the same.

Therefore, the natural definition of the structure pre-sheaf (i.e. that to a
localization A→ B associates B) does not give a sheaf.

But still, there is descent for modules and we can always reconstruct any
M ∈ HModA via the Amistur complex associated with the any cover.

Once this is properly developed we should get Gelfand’s duality.

THANKS for your attention!
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