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Notation

K will be a nonarchimedean complete valued field of characteristic 0,
with valuation ring V and residue field k.

R will be a nonarchimedean Banach ring over K .

BanR will be the category of nonarchimedean Banach modules over R
with bounded morphisms.

CBornR will be the category of complete bornological modules over
R.
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Bornological modules

The category CBornR is a quasi-abelian category (Bambozzi-Ben Bassat).

Remark
We can make sense of the derived category D(CBornR).

The ∞-category D(CBornR) is a closed symmetric monoidal stable
∞-category (Kelly).

Example
The polynomial algebra R[t] is an element of CBornR .
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Tempered functions

Let n ∈ N, we denote by R[[t]]n the Banach module of power series with
log-growth bounded by n:∑

i∈N
ai ti ∈ R[[t]] : ai ∈ R, supi∈N|ai |R(i + 1)−n < ∞

 .

If n = 0, we obtain the bounded series R[[t]]0.

Definition
We set

R[[t]]temp =
⋃

n∈N
R[[t]]n.

These are the tempered functions over R. They form an algebra in
CBornR .
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Tempered functions

Usually there is a correspondence:

algebras of “functions”↔ regions of “spaces”.

Example
Tate algebra K ⟨t⟩ ↔ closed unit ball B1(1) in the rigid affine line over K :

A1,an
K .

What about tempered functions?

P. Vanni (Università degli studi di Padova) Tempered functions Padova, September 2024 5 / 18



Tempered functions

Usually there is a correspondence:

algebras of “functions”↔ regions of “spaces”.

Example
Tate algebra K ⟨t⟩ ↔ closed unit ball B1(1) in the rigid affine line over K :

A1,an
K .

What about tempered functions?

P. Vanni (Università degli studi di Padova) Tempered functions Padova, September 2024 5 / 18



Tempered functions

Usually there is a correspondence:

algebras of “functions”↔ regions of “spaces”.

Example
Tate algebra K ⟨t⟩ ↔ closed unit ball B1(1) in the rigid affine line over K :

A1,an
K .

What about tempered functions?

P. Vanni (Università degli studi di Padova) Tempered functions Padova, September 2024 5 / 18



Tempered functions

Usually there is a correspondence:

algebras of “functions”↔ regions of “spaces”.

Example
Tate algebra K ⟨t⟩ ↔ closed unit ball B1(1) in the rigid affine line over K :

A1,an
K .

What about tempered functions?

P. Vanni (Università degli studi di Padova) Tempered functions Padova, September 2024 5 / 18



The spectrum of a closed symmetric monoidal stable
∞-category

Let (C,⊗) be a closed symmetric monoidal stable ∞-category.

There is a way to define a topological space associated to C (Clausen and
Scholze).

Definition
Let Comm(C) be the ∞-category of commutative algebras in C. A
morphism A → A′ ∈ Comm(C) is called homotopy epimorphism if

A′ ⊗A A′ ∼= A′.

Let I(C) be the set of homotopy epimorphisms of the form 1 → A, for
A ∈ C.
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The spectrum of a closed symmetric monoidal stable
∞-category

One can prove that I(C) is a poset.

This poset is a cocomplete distributive lattice that satisfies the infinite
distributive law for meets over joins =⇒ I(C) can be identified with the
poset of closed subset of a topological space T .

This picture is “dual” to the classical point of view of homotopical
algebraic geometry.
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The spectrum of a closed symmetric monoidal stable
∞-category

Using the duality between distributive lattice and coherent spaces
(Johnstone) we constructed a spectral space S(C) such that I(C)
corresponds to a basis of compact open subsets of S(C).

This space is naturally endowed with a structure sheaf OS(C) with values
in Comm(C), defined by

UA 7→ A,

where A ∈ I(C) and UA is the open set in S(C) corresponding to A.

The space S(C) recovers the (formal) homotopical Zariski Grothendieck
topology on Comm(C).
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The derived affine line over R

If R is an object in Comm(D(CBornR)), we can specialize the above
construction to ModR obtaining the derived analytic spectrum of R:
S(R).

Definition
The derived analytic affine line over R is

A1,der
R = S(R[t]).

If R = K , K [t] → K ⟨t⟩ and affinoid localizations are homotopy
epimorphisms in CBornK (Ben Bassat-Kremnizer and Ben
Bassat-Mukherjee) =⇒ this picture “refines” rigid analytic geometry.
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The derived affine line over R

This also perspective allows one to speak about functions that are defined
by “arithmetic conditions” (like tempered functions) as “geometric”
functions (Scholze).

Proposition
The inclusion

R[t] ↪→ R[[t]]temp

is an homotopy epimorphism in Comm(D(CBornR)).

In particular R[[t]]temp defines an open tempered unit ball: B1
temp(1) in

A1,der
R .
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The derived affine line over R

We have for example that

B1
open(1) ⊂ B1

temp(1) ⊂ B1
bound(1) ⊂ B1(1),

where B1
open(1), B1

bound(1) and B1(1) are the open unit balls in A1,der
R

associated respectively to R{{t}} (the series convergent in | · |R < 1),
R[[t]]0 and R⟨t⟩ (they all define homotopy epimorphisms from the unit).
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Application: Tempered transfer theorem

Let
d
dt y = Gy (1)

be a differential system over K ⟨t⟩ (G ∈ Md(K ⟨t⟩)).

By formal Cauchy’s theorem the differential system (1) admits a full set of
formal solutions Y ∈ GLd(K [[t]]), d ∈ N. If K = C solutions converge
everywhere. But not in the p-adic world!
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Application: Tempered transfer theorem

Let w be a formal variable. Functions over K can be developed at w (the
“generic point”) via the morphism of differential rings

τ : K ⟨t⟩ → K ⟨t⟩[[w ]]0,

τ : f (t) 7→
∑

i

(( d
dt

)i f
i!

)
w i .

We obtain a new differential system

d
dw y = τ(G)y. (2)
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Application: Tempered transfer theorem

Theorem (Dwork)
The radius of convergence of the formal solutions of the differential system
(1) is bounded below by the radius of convergence of the development at
the generic point.

In Berkovich spaces the generic point corresponds to the point given by
the Gauss norm =⇒ this theorem can be interpreted as a continuity
result (Baldassarri, Poineau-Pulita).
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Application: Tempered transfer theorem

Other properties of solutions of differential systems can be checked at the
generic point, for example the property of having bounded log-growth.

Theorem (Christol)
If the development of Y is in GLd(K ⟨t⟩[[w ]]temp) then
Y ∈ GLd(K [[t]]temp).

The theorem above can be interpreted as a continuity theorem in our
framework.
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Application: Tempered transfer theorem

We have the commutative diagram:

A2,der
K

A1,der
K A1,der

K .

τ t = 0

t 7→ w

In particular if the solutions of (2) live in the open B2
temp(1) ⊂ A2,der

K , by
continuity of the map t = 0, Y lives in the inverse image open B1

temp.
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Tempered convergent cohomology

P. Vanni (Università degli studi di Padova) Tempered functions Padova, September 2024 17 / 18



Tempered convergent cohomology

Let Xk be a k-scheme.

Construction of classical rigid convergent cohomology:
Let Xk ↪→ P be a closed embedding in a smooth formal scheme.
Consider the open tube of radius one of X in the generic fiber PK and
then take the cohomology of the de Rham complex of it.
The result is independent upon all the choices.

Example
Consider Xk = {pt} ↪→ A1,an

V ; here the tube is B1
open(1). The cohomology

is computed by
0 → K{{t}} ∂−→ K{{t}}dt → 0.

But we can take B1
temp(1) instead of B1

open(1) and we obtain the same.
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temp(1) instead of B1

open(1) and we obtain the same.
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Thank you for your attention!
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