Derived analytic geometry via entire functional calculus and dagger affinoids

J.P.Pridham

Entire functional calculus

K a complete valued field of characteristic 0. Definition $\mathcal{O}(K^n)$ the ring of holomorphic functions on K^n :

$$\sum_{m_1,\ldots,m_n=0}^{\infty} \lambda_{m_1,\ldots,m_n} z_1^{m_1} \cdots z_n^{m_n} \in K[\![z_1,\ldots,z_n]]$$
$$\lim_{\sum m_i \to \infty} |\lambda_{m_1,\ldots,m_n}|^{1/\sum m_i} = 0.$$

Definition EFC K-algebra A: a commutative K-algebra with evaluations $f(a_1, \ldots, a_n) \in A$ for all $f \in \mathcal{O}(K^n)$. Formally, A is a product-preserving functor

$$({K^n}_n, \text{ analytic maps}) \to \text{Set}$$

 $K^n \mapsto A^n.$

Examples

- commutative Banach K-algebras
- filtered limits of such, known as LMC (locally multiplicatively convex) topological commutative K-algebras
- hence Stein algebras
- quotients of these by any (not necessarily closed) ideal

Lemma

All finitely presented EFC algebras are Stein.

Proof.

 $A = \mathcal{O}(K^n)/I$ for I finitely generated, so closed. (The topology on A is canonical.)

Lemma

EFC is the monad for the free-forget adjunction from commutative LMC algebras to sets.

Proof.

LMC completion of K[S] is $\varinjlim_{T \subset S} \mathcal{O}(K^T)$, since

$$\lim_{f: S \to \mathbb{R}_{>0}} \ell^1 \langle \frac{x_s}{f(s)} \rangle_{s \in S} \cong \varinjlim_{\substack{T \\ \text{finite}}} \varprojlim_{r > 0} \ell^1 \langle \frac{x_t}{r} \rangle_{t \in T}.$$

EFC-DGAs (derived structures appear) Definition (Carchedi-Roytenberg) An EFC-DGA A over K is a K-CDGA A_{\bullet} with a compatible EFC structure on A_0 s.t. $\delta: A_0 \rightarrow A_{-1}$ is an EFC derivation.

We'll consider only $A = A_{\geq 0}$.

► Dold-Kan, with Eilenberg-Zilber shuffles gives: Theorem (Nuiten)

Simplicial EFC-algebras and EFC-DGAs, localised at π_* - and H_* -isomorphisms respectively, form equivalent ∞ -categories.

► Analogues for any Fermat theory (Hadamard's lemma $\frac{f(x,\underline{z})-f(y,\underline{z})}{x-y} \in \mathcal{O}(\mathcal{K}^{n+2}) \ \forall f \in \mathcal{O}(\mathcal{K}^{n+1})).$

Model structures on EFC-DGAs $A_{\geq 0}$

- Weak equivalences of EFC-DGAs are H_{*}-isomorphisms.
- Standard model structure:
 - fibrations are surjective in positive degrees
 - I.g. cofibrant objects are retracts of (O(Kⁿ)[y₁,..., y_m], δ), deg y_i > 0.

Local model structure:

- additional cofibrations gen'd by O(Kⁿ) → O(U) for open Stein submanifolds U ⊂ Kⁿ
- fewer fibrations (RLP on $A_0 \rightarrow H_0A \times_{H_0B} B_0$).
- They are Quillen equivalent.

∞ -equivalences

Theorem

The forgetful functor from LMC topological CDGAs $A_{\geq 0}$ to EFC-DGAs $A_{\geq 0}$ becomes an equivalence on ∞ -localisation at abstract H^{*}-isomorphisms.

Proof.

The unit of the adjunction is an isomorphism on any cofibrant EFC-DGA. $\hfill \Box$

Corollary

A functor on LMC topological CDGAs descends to an ∞ -functor on EFC-DGAs iff it sends abstract H*-isomorphisms to weak equivalences. (Good for maps between analytifications.) Cotangent complexes (Quillen's theory)

• Ω^1_A the A-module representing the functor

 $M \mapsto \operatorname{Hom}_{EFC}(A, A \oplus M\epsilon) \times_{\operatorname{Hom}_{EFC}(A,A)} {\operatorname{id}}$

•
$$\mathbb{L}\Omega^1_A := \Omega^1_{\tilde{A}} \otimes_{\tilde{A}} A$$
, for $\tilde{A} \to A$ cofibrant replacement

- H_0 and $\mathbb{L}\Omega^1$ detect H_* -isomorphisms
- $\mathbb{L}\Omega^1_{B/A}$ is alg. cotangent complex if $A_0 \cong B_0$
- Local model structure suffices, so

$$\mathbb{L}\Omega^1_{\mathcal{O}(U)} \simeq \Omega^1_{\mathcal{O}(U)} \simeq \Gamma(U, \Omega^1_U)$$

for any Stein manifold U.

► ~→ symplectic and Poisson structures.

Comparison with Lurie/Porta-Yu I

Theorem

For Y and X (L/P-Y) derived K-analytic spaces s.t. classical locus t_0X is Stein (+mild finiteness),

 $\operatorname{\mathsf{map}}_{\operatorname{\mathsf{dAn}}_{\mathcal{K}}}(Y,X) \xrightarrow{\sim} \operatorname{\mathsf{map}}_{EFC}(\operatorname{\mathsf{RF}}(X,\mathscr{O}_X),\operatorname{\mathsf{RF}}(Y,\mathscr{O}_Y)).$

Proof.

Work up the Postnikov tower of \mathcal{O}_Y , using Wiegmann's or Lütkebohmert's embedding theorem for $H_0 \mathcal{O}_X$, then cotangent complexes.

Essentially, X is a homotopy limit of spaces Kⁿ, so most pregeometric data redundant here.

Dagger dg algebras

Definition

Washnitzer algebra $K\langle \frac{x_1}{r_1}, \ldots, \frac{x_n}{r_n} \rangle^{\dagger}$ the Noetherian ring of overconvergent functions on a polydisc:

$$\sum_{m_1,\ldots,m_n=0}^{\infty} \lambda_{m_1,\ldots,m_n} z_1^{m_1} \cdots z_n^{m_n} \in K[\![z_1,\ldots,z_n]\!]$$
$$|\lambda_{\underline{m}}|\rho_1^{m_1} \ldots \rho_n^{m_n} \xrightarrow{|\underline{m}| \to \infty} 0 \text{ for some } \rho_i > r_i.$$

Quotients of these are dagger algebras.

Definition

A dagger DGA $A_{\geq 0}$ is a *K*-CDGA with A_0 a dagger algebra and the A_0 -modules A_m all finite.

Definition

A dagger DGA A is *quasi-free* if A_0 is isomorphic to a Washnitzer algebra and A is freely generated as a graded-commutative A_0 -algebra.

Every dagger algebra is naturally an ind-Banach algebra, and we then have:

Theorem

The forgetful functor from dagger DGAs to EFC-DGAs becomes ∞ -fully faithful on inverting H_{*}-isomorphisms.

Proof.

Noetherianity gives quasi-free cosimplicial frames for dagger DGAs. They yield mapping spaces via local model structure on EFC-DGAs, since cofibrant.

Exact functors on dagger DGAs

Dagger algebras are ind-(nuclear Fréchet), since

$$K\langle \frac{x_1}{r_1},\ldots,\frac{x_n}{r_n}\rangle^{\dagger} = \lim_{\substack{\rho_i > r_i}} O(\Delta(\rho_1,\ldots,\rho_n)).$$

Noetherianity makes A. strictly exact, so:

Corollary

For dagger DGAs A and Fréchet spaces V we have $H_*(A \hat{\otimes}_{\pi} V) \cong H_*(A) \hat{\otimes}_{\pi} V$.

 many functors on corresponding EFC-DGAs, e.g for V a ring of continuous functions (inc. condensed) or smooth forms.

Dagger dg spaces

Definition

A K-dagger dg space X is pair $(\pi^0 X, \mathscr{O}_X)$ where:

- $\pi^0 X$ is a *K*-dagger space (Grosse–Klönne)
- \mathcal{O}_X is a presheaf of dagger DGAs on its site of open affinoid subdomains

$$\blacktriangleright \mathsf{H}_0 \mathscr{O}_X = \mathscr{O}_{\pi^0 X}$$

• $H_i \mathcal{O}_X$ are all coherent $\mathcal{O}_{\pi^0 X}$ -modules.

Example: $(Sp(H_0A), \iota^{-1}A)$, for A a dagger DGA and $\iota: Sp(H_0A) \rightarrow Sp(A_0)$.

• $X \to Y$ a weak equivalence if $\pi^0 X \cong \pi^0 Y$ and $H_* \mathscr{O}_X \cong H_* \mathscr{O}_Y$.

Comparison with Lurie/Porta-Yu II

For p.p.= partially proper (\approx without boundary):

Theorem

The ∞ -category of p.p. (L/P-Y) derived K-analytic spaces is equivalent to the ∞ -category of dg dagger spaces X with $\pi^0 X$ p.p.

Proof.

Rigid analytic and dagger analytic spaces correspond when p.p. Cotangent complexes agree, so we induct on Postnikov tower of \mathcal{O}_X .

Non-commutative analogues and challenges

- (Pirkovskii) Free EFC (FEFC) algebras based on completion \mathcal{F}_n of tensor algebra.
- FEFC DGAs via graded completions of graded tensor algebra (higher degrees subtler than in commutative case).
- FEFC-DGAs Quillen equivalent to simplicial FEFC (uses convergence of homotopies).
- FEFC-DGAs equivalent to localising LDMC (i.e. pro-Banach) dg algebras at H_{*}-isos.
- On (nuclear) Fréchet DGAs, -ôV preserves H_{*}-isos for V)nuclear(Fréchet.

- ► Hard to find a good (∞-)subcategory of LDMC algebras:
- Fewer Noetherian algebras, so cofibrant replacement hard.
- Cotangent complexes liable to explode.
- Without Noetherianity, complexes aren't strict
 few functors on H_{*}-localisation.
- Fewer nuclear algebras (*F_n* has *n^m* coefficients in degree *m*):
- on \mathcal{F}_n , the map between completions w.r.t. $\|-\|_{\rho}$ and $\|-\|_{\rho'}$ is only nuclear for $\rho' > n\rho$ (cf. $\rho' > \rho$ in commutative case).
- Hence only analogues of compact Steins or overconvergence are close to commutative.

References I

D. Carchedi and D. Roytenberg, *Homological Algebra for Superalgebras of Differentiable Functions*, arXiv:1212.3745 [math.AG], 2012.

Elmar Grosse-Klönne, *Rigid analytic spaces with overconvergent structure sheaf*, J. Reine Angew. Math. **519** (2000), 73–95. MR 1739729

Jacob Lurie, *Derived algebraic geometry V: Structured spaces*, arXiv:0905.0459v1 [math.CT], 2009.

_____, Derived algebraic geometry IX: Closed immersions, available at www.math.harvard.edu/~lurie/papers/DAG-IX.pdf, 2011.

Joost Nuiten, *Lie algebroids in derived differential topology*, Ph.D. thesis, Utrecht, 2018.

Alexei Yu. Pirkovskii, *Holomorphically finitely generated algebras*, J. Noncommut. Geom. **9** (2015), no. 1, 215–264. MR 3337959

J. P. Pridham, *A differential graded model for derived analytic geometry*, Advances in Mathematics **360** (2020), 106922, arXiv: 1805.08538v1 [math.AG].

_____, Shifted symplectic structures on derived analytic moduli of ℓ -adic local systems and galois representations, 2205.02292v3 [math.AG], 2022.

References II

- _____, *Towards noncommutative derived analytic geometry*, in preparation, 2025.
- Mauro Porta and Tony Yu Yue, Derived non-Archimedean analytic spaces, Selecta Math. (N.S.) 24 (2018), 609–665, arXiv:1601.008592v2 [math.AG].
 - Daniel Quillen, *On the (co-) homology of commutative rings*, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 65–87. MR 41 #1722