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Review of classical log structures

Log structure on a stack X (Fontaine–Illusie style, [Kato])
Monoid M in Xét with M

α−→ OX such that α−1O×
X

≃−→ O×
X

Homotopical version: spectral (affine) by [Rognes], derived by [Sagave–Schürg–Vezzosi]

Motivating example
D divisor on X ⇝ log structure OX (D)→ OX

Remark: Stack quotient by O×
X gives α : M := [M/O×

X ]→ [OX/O
×
X ]

Stacky reformulation (Deligne–Faltings style, [Borne–Talpo–Vistoli])

Pre-log structure: monoid M in Xét with M
α−→ [A1

X/Gm,X ] =: CartX

Log structure if α has trivial kernel
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Shifted divisors in derived geometry

Line bundles in derived geometry
▶ PicX = BGm = [∗/Gm] moduli stack of invertible objects in QCoh(X )cn

▶ Invertible objects in QCoh(X ) classified by Pic
†
X = ZX ×BGm: shifted line bundles

What is the stack Cart
†
X of “shifted divisors”?

Idea: “
∐
n∈ZX

”
[
A1[n]/Gm

]
where “

∐
n∈ZX

” means: on each connected component U , take
∐
n∈Z

[
A1

U [n]/Gm,U

]
Problem: ▶ How to make sense formally of this sheaf-indexed colimit?

▶ What is the “induced” monoid structure on Cart
†
X ?
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Toward internal colimits
Observation: G a group, α : BG → C an object C with G-action in a category C

Then lim←−
BG

α = CG object of G-invariants, and colim−→
BG

α = CG = C/G quotient

What to do for G an algebraic group over some X , i.e. internal group in Xét?

Two incarnations of BG
▶ BG = [∗/G ] object of the (∞, 1)-topos Xét ≃ Shv∞-Grpd(Xét)

▶ B•G = ker(∗ → BG ) internal groupoid in Xét, with BnG = Gn

Two incarnations of internal categories in an (∞, 1)-topos X

▶ Category object in X is C• : ∆
op → X with Segal condition Cn

≃−→ C1 ×C0
· · · ×C0

C1

Internal category if it is Rezk-complete, aka univalent
▶ Sheaf of (∞, 1)-categories on X (object of the (∞, 2)-topos Shv(∞,1)-Cat(X))
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Internal colimits
Internal category theory in X = “category theory in the internal language of X”

= formal category theory in Cat(X)

Internal colimits [Martini–Wolf ]
I, C internal categories. ∃ internal functor ∆ : C→ CI, “constant diagrams”
▶ CI is the exponential, X ∋ Z 7→ F un(Z ×I, C)

A functor of I-indexed colimits in C is an internal left-adjoint colim−→ I
: CI→ C to ∆

Quotients of internal group actions
▶ Any (∞, 1)-topos X has an object classifier Ω, such that hom(Z ,Ω) ≃ (X/Z )

≃

=⇒ Ω is the core of an X-category U: Z 7→ X/Z , the universe
▶ G a group in X ⇝ UBG (∗) ≃ F un(BG , U) ≃ U(BG ) ≃ X/BG

=⇒ colim−→ BG
is left-adjoint to (−)×BG : X/∗ → X/BG : quotient [−/G ]
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Upshot: The stack of shifted divisors as an internal colimit

Total space of line bundles
Internal functor Ω∞ : BGm,X = PicX → U by:

PicX (T ) = {line bundles on T } ∋ L 7→ Ω∞L= VT (L) ∈ dSt/T = U(T )

By before: CartX :=
[
A1

X/Gm,X

]
= colim−→

PicX

Ω∞

Shifted version
▶ Ω∞ : Pic†

X ≃ ZX ×PicX → U, (n,L) 7→ Ω∞(L[n])

▶ Cart
†
X := colim−→

Pic
†
X

Ω∞ (think colim−→
n∈ZX

colim−→
A1∈BGm

Ω∞(A1[n]))
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Gradings
By “Fubini”, we can also think of Cart

†
X as

[ ∐
n∈ZX

Ω∞(A1[n])
/
Gm

]
Total shift of M ∈QCoh(X ): Ω∞

grM =
∐
n∈Z

Ω∞(M[n])

Interpretation of the total shift
▶ Give M chaotic Z-grading: (Mchs)n = M component ∀n ∈ Z

▶ Shear the Z-graded object: (Pshr)n = Pn[n]

Ω∞
grM = (Mchs)shr

Remark: Groupoid-indexed colimits as gradings:
UI U/|I|

U
colim−→I

≃

Problem: Z-shearing is only E2- but not E3-monoidal over S [Lurie]
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Graded infinite loop spaces
Shift is an automorphism of QCoh(X ) = Γ(QCohX ): monoidal functor ZX → End

(
QCohX

)
▶ Z is the free grouplike E1-monoid on a object

▶ Ω∞S is the free grouplike E∞-monoid on an object

Internal Eilenberg–Watts (almost) theorem
Equivalence of internal E1-monoidal categories Endex(QCohX ) ≃ QCohX

=⇒ End
(
QCohX

)
acquires an E∞ refinement

Corollary
Shifting extends to an S-automorphism Ω∞SX → End

(
QCohX

)×
S-graded Ω∞

$ M =
∐

n∈Ω∞S

Ω∞(M[n]) [Sagave–Schlichtkrull], and Pic$
X = Ω∞SX ×BGm,X

=⇒ Cart$X = colim−→ Pic$X

Ω∞ ≃ [
Ω∞

$ A1

X/Gm,X

]
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The higher Brauer groups

Presentable stable (∞, n)-categories [Stefanich]
▶ A (presentable) stable (∞, 0)-category is a spectrum
▶ A presentable stable (∞, n + 1)-category is a compact object in Stn-Cat

Iterated modules
A E∞-ring ⇝ A-Modn :=

(
A-Modn−1

)
-Mod an E∞-monoidal stable (∞, n)-cat

Lemma [Stefanich]
A 7→ A-Modn satisfies étale descent ⇝ sheaf of (∞, n)-cats QCohn

We will define Br$n = QCoh×
n+1

(Conjecture: It recovers Haugseng’s Brauer groups)

Low ns: Br$−1
= Gm (connectively), Br$

0
= Pic$, and Br$

1
is the extended Brauer stack
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Higher affines
n-categorical structure sheaf QCohn ∈QCohn+1(X ), with Γ(X ,QCohn) = QCohn(X )

n-affine stacks [Stefanich, Gaitsgory for n = 1]
A derived stack X is n-affine if Γ(X ,−): QCohn+1(X )

≃−→QCohn(X )-Mod

n-categorical affines
▶ An n-categorical ring is a symmetric monoidal stable (∞, n)-category
▶ (∞, n + 1)-category of n-affines Affn = Ringn

op

n-categorical stacks: functors Affn → (∞, n)-Cat with n-categorical descent

Embedding in,k : Affn ↪→ Affn+k , A 7→ A-Modk inducing i∗n,k : (n + k)-dSt→ n-dSt

A derived stack is n-affine iff it is of the form i∗
0,n Spec(A) for A an n-ring
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Higher-categorical logarithmic structures
▶ In the (∞, n + 1)-topos n-dSt/X , internal n-functor

τ : Br$n → U (underlying (∞, n)-category of a stable (∞, n)-cat)

▶ n-categorical (extended) Cartier stack: Cart$n = colim−→ Br$n

τ

Alternatively: Ω∞
$ : Sp→∞-Grpd (symmetric) monoidal

=⇒ (Ω∞
$ )∗,...,∗ : Sp-Cat- · · · -Cat→∞-Grpd-Cat- · · · -Cat

Expectations
▶ The infinite root stack of an n-categorical log structure will be an n-stack
▶ For n-log structures on curves, recover higher gerbes Bn µ∞
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