Higher-categorical logarithmic structures from higher Brauer groups

David Kern Joint WIP with David Rydh

Kunliga Tekniska Högskolan

Invitation to derived geometry in Padova 2nd September 2024

Review of classical log structures

Log structure on a stack X (Fontaine–Illusie style, [Kato])

Monoid \mathcal{M} in $X_{\text{ét}}$ with $\mathcal{M} \xrightarrow{\alpha} \mathbb{O}_X$ such that $\alpha^{-1}\mathbb{O}_X^{\times} \xrightarrow{\simeq} \mathbb{O}_X^{\times}$

Homotopical version: spectral (affine) by [Rognes], derived by [Sagave-Schürg-Vezzosi]

Motivating example

D divisor on $X \rightsquigarrow \log$ structure $\mathfrak{G}_X(D) \to \mathfrak{G}_X$

Review of classical log structures

Log structure on a stack X (Fontaine–Illusie style, [Kato])

Monoid \mathcal{M} in $X_{\text{ét}}$ with $\mathcal{M} \xrightarrow{\alpha} \mathbb{O}_X$ such that $\alpha^{-1} \mathbb{O}_X^{\times} \xrightarrow{\simeq} \mathbb{O}_X^{\times}$

Homotopical version: spectral (affine) by [Rognes], derived by [Sagave-Schürg-Vezzosi]

Motivating example

D divisor on $X \rightsquigarrow \log$ structure $\mathfrak{G}_X(D) \to \mathfrak{G}_X$

Remark: Stack quotient by \mathbb{G}_X^{\times} gives $\overline{\alpha} \colon \overline{\mathcal{M}} \coloneqq [\mathcal{M}/\mathbb{G}_X^{\times}] \to [\mathbb{G}_X/\mathbb{G}_X^{\times}]$

Stacky reformulation (Deligne-Faltings style, [Borne-Talpo-Vistoli])

Pre-log structure: monoid
$$\overline{\mathcal{M}}$$
 in $X_{\text{\acute{e}t}}$ with $\overline{\mathcal{M}} \xrightarrow{\overline{\alpha}} [\mathbb{A}^1_X/\mathbb{G}_{m,X}] \rightleftharpoons \mathscr{C}art_X$
log structure if $\overline{\alpha}$ has trivial kernel

Shifted divisors in derived geometry

Line bundles in derived geometry

- ► $\mathscr{P}ic_X = \mathscr{B} \mathbb{G}_m = [*/\mathbb{G}_m]$ moduli stack of invertible objects in $\mathfrak{QCob}(X)^{cn}$
- ► Invertible objects in $\mathfrak{QCoh}(X)$ classified by $\mathscr{P}ic_X^{\dagger} = \mathbb{Z}_X \times \mathscr{B} \mathbb{G}_m$: shifted line bundles

Shifted divisors in derived geometry

Line bundles in derived geometry

- ► $\mathscr{P}ic_X = \mathscr{B} \mathbb{G}_m = [*/\mathbb{G}_m]$ moduli stack of invertible objects in $\mathfrak{QCob}(X)^{cn}$
- ► Invertible objects in $\mathfrak{QCoh}(X)$ classified by $\mathscr{P}ic_X^{\dagger} = \mathbb{Z}_X \times \mathscr{B} \mathbb{G}_m$: shifted line bundles

What is the stack $Cart_X^{\dagger}$ of "shifted divisors"?

dea: "
$$\prod_{n \in \mathbb{Z}_X}$$
" $[\mathbb{A}^1[n]/\mathbb{G}_m]$

where " $\coprod_{n \in \mathbb{Z}_X}$ " means: on each connected component U, take $\coprod_{n \in \mathbb{Z}} \left[\mathbb{A}^1_U[n] / \mathbb{G}_{\mathsf{m},U} \right]$

Shifted divisors in derived geometry

Line bundles in derived geometry

- ► $\mathscr{P}ic_X = \mathscr{B} \mathbb{G}_m = [*/\mathbb{G}_m]$ moduli stack of invertible objects in $\mathfrak{QCoh}(X)^{cn}$
- ► Invertible objects in $\mathfrak{QCoh}(X)$ classified by $\mathscr{P}ic_X^{\dagger} = \mathbb{Z}_X \times \mathscr{B} \mathbb{G}_m$: shifted line bundles

What is the stack $Cart_X^{\dagger}$ of "shifted divisors"?

Idea: "
$$\prod_{n \in \mathbb{Z}_X}$$
" $[\mathbb{A}^1[n]/\mathbb{G}_m]$

where " $\coprod_{n \in \mathbb{Z}_X}$ " means: on each connected component U, take $\coprod_{n \in \mathbb{Z}} \left[\mathbb{A}^1_U[n] / \mathbb{G}_{\mathsf{m},U} \right]$

Problem: ► How to make sense formally of this sheaf-indexed colimit?
► What is the "induced" monoid structure on Cart[†]_x?

Toward internal colimits

Observation: *G* a group, $\alpha: \mathfrak{B}G \to \mathfrak{C}$ an object *C* with *G*-action in a category \mathfrak{C} Then $\lim_{\mathfrak{B}G} \alpha = C^G$ object of *G*-invariants, and $\underset{\mathfrak{B}G}{\operatorname{colim}} \alpha = C_G = C/G$ quotient

What to do for G an algebraic group over some X, *i.e.* internal group in $X_{\text{ét}}$?

Toward internal colimits

Observation: *G* a group, $\alpha: \mathfrak{B}G \to \mathfrak{C}$ an object *C* with *G*-action in a category \mathfrak{C} Then $\lim_{\mathfrak{B}G} \alpha = C^G$ object of *G*-invariants, and $\operatorname{colim}_{\mathfrak{B}G} \alpha = C_G = C/G$ quotient

What to do for G an algebraic group over some X, *i.e.* internal group in $X_{\text{ét}}$?

Two incarnations of $\mathcal{B}G$

- ▶ $\mathcal{B} G = [*/G]$ object of the $(\infty, 1)$ -topos $X_{\text{ét}} \simeq \mathfrak{Shv}_{\infty-\mathfrak{Grpb}}(X_{\text{ét}})$
- ▶ $B_{\bullet}G = \ker(* \rightarrow \mathcal{B} G)$ internal groupoid in $X_{\text{ét}}$, with $B_nG = G^n$

Toward internal colimits

Observation: *G* a group, $\alpha: \mathfrak{B}G \to \mathfrak{C}$ an object *C* with *G*-action in a category \mathfrak{C} Then $\lim_{\mathfrak{B}G} \alpha = C^G$ object of *G*-invariants, and $\underset{\mathfrak{B}G}{\operatorname{colim}} \alpha = C_G = C/G$ quotient

What to do for G an algebraic group over some X, *i.e.* internal group in $X_{\text{ét}}$?

Two incarnations of $\mathfrak{B}G$

•
$$\mathcal{B} G = [*/G]$$
 object of the $(\infty, 1)$ -topos $X_{\acute{e}t} \simeq \mathfrak{Shv}_{\infty-\mathfrak{Grpb}}(X_{\acute{e}t})$

•
$$B_{\bullet}G = \ker(* \to \mathcal{B} G)$$
 internal groupoid in $X_{\text{ét}}$, with $B_nG = G^n$

Two incarnations of internal categories in an $(\infty,1)$ -topos $\mathfrak X$

• Category object in \mathfrak{X} is $C_{\bullet}: \Delta^{\mathrm{op}} \to \mathfrak{X}$ with Segal condition $C_n \xrightarrow{\simeq} C_1 \times_{C_0} \cdots \times_{C_0} C_1$ Internal category if it is Rezk-complete, aka univalent

Sheaf of $(\infty, 1)$ -categories on \mathfrak{X} (object of the $(\infty, 2)$ -topos $\mathfrak{Shv}_{(\infty, 1)}$ - $\mathfrak{Cat}(\mathfrak{X})$)

Internal category theory in \mathfrak{X} = "category theory in the internal language of \mathfrak{X} " = formal category theory in $\mathfrak{Cat}(\mathfrak{X})$

Internal colimits [Martini–Wolf]

 \mathscr{F}, \mathscr{C} internal categories. \exists internal functor $\Delta : \mathscr{C} \to \mathscr{C}^{\mathscr{F}}$, "constant diagrams"

▶ $\mathscr{C}^{\mathscr{F}}$ is the exponential, $\mathfrak{X} \ni Z \mapsto \operatorname{Fun}(Z \times \mathscr{F}, \mathscr{C})$

Internal category theory in \mathfrak{X} = "category theory in the internal language of \mathfrak{X} " = formal category theory in $\mathfrak{Cat}(\mathfrak{X})$

Internal colimits [Martini–Wolf]

 \mathscr{F}, \mathscr{C} internal categories. \exists internal functor $\Delta \colon \mathscr{C} \to \mathscr{C}^{\mathscr{F}}$, "constant diagrams"

▶ $\mathscr{C}^{\mathscr{F}}$ is the exponential, $\mathfrak{X} \ni Z \mapsto \mathsf{Fun}(Z \times \mathscr{F}, \mathscr{C})$

A functor of \mathscr{F} -indexed **colimits** in \mathscr{C} is an internal left-adjoint $\underset{\longrightarrow}{\operatorname{colim}}_{\mathscr{F}}: \mathscr{C}^{\mathscr{F}} \to \mathscr{C}$ to Δ

Internal category theory in \mathfrak{X} = "category theory in the internal language of \mathfrak{X} " = formal category theory in $\mathfrak{Cat}(\mathfrak{X})$

Internal colimits [Martini–Wolf]

 \mathscr{F}, \mathscr{C} internal categories. \exists internal functor $\Delta \colon \mathscr{C} \to \mathscr{C}^{\mathscr{F}}$, "constant diagrams"

• $\mathscr{C}^{\mathscr{F}}$ is the exponential, $\mathfrak{X} \ni Z \mapsto \operatorname{Fun}(Z \times \mathscr{F}, \mathscr{C})$

A functor of \mathscr{F} -indexed **colimits** in \mathscr{C} is an internal left-adjoint $\underset{\longrightarrow}{\operatorname{colim}}_{\mathscr{F}}: \mathscr{C}^{\mathscr{F}} \to \mathscr{C}$ to Δ

Quotients of internal group actions

► Any $(\infty, 1)$ -topos \mathfrak{X} has an object classifier Ω , such that $\hom(Z, \Omega) \simeq (\mathfrak{X}_{/Z})^{\simeq}$ $\implies \Omega$ is the core of an \mathfrak{X} -category $\mathfrak{U}: Z \mapsto \mathfrak{X}_{/Z}$, the universe

Internal category theory in \mathfrak{X} = "category theory in the internal language of \mathfrak{X} " = formal category theory in $\mathfrak{Cat}(\mathfrak{X})$

Internal colimits [Martini–Wolf]

 \mathscr{F}, \mathscr{C} internal categories. \exists internal functor $\Delta \colon \mathscr{C} \to \mathscr{C}^{\mathscr{F}}$, "constant diagrams"

• $\mathscr{C}^{\mathscr{F}}$ is the exponential, $\mathfrak{X} \ni Z \mapsto \operatorname{Fun}(Z \times \mathscr{F}, \mathscr{C})$

A functor of \mathscr{F} -indexed **colimits** in \mathscr{C} is an internal left-adjoint colim $\stackrel{}{\underset{\longrightarrow}{\longrightarrow}} : \mathscr{C}^{\mathscr{F}} \to \mathscr{C}$ to Δ

Quotients of internal group actions

• Any $(\infty, 1)$ -topos \mathfrak{X} has an object classifier Ω , such that $\hom(Z, \Omega) \simeq (\mathfrak{X}_{/Z})^{\simeq}$ $\implies \Omega$ is the core of an \mathfrak{X} -category $\mathfrak{U} : Z \mapsto \mathfrak{X}_{/Z}$, the universe

$$\blacktriangleright \ G \text{ a group in } \mathfrak{X} \rightsquigarrow \mathscr{U}^{\mathfrak{B} \, G}(\ast) \simeq \mathtt{Fun}(\mathfrak{B} \, G, \mathscr{U}) \simeq \mathscr{U}(\mathfrak{B} \, G) \simeq \mathfrak{X}_{/ \, \mathfrak{B} \, G}$$

Internal category theory in \mathfrak{X} = "category theory in the internal language of \mathfrak{X} " = formal category theory in $\mathfrak{Cat}(\mathfrak{X})$

Internal colimits [Martini–Wolf]

 \mathscr{F}, \mathscr{C} internal categories. \exists internal functor $\Delta \colon \mathscr{C} \to \mathscr{C}^{\mathscr{F}}$, "constant diagrams"

• $\mathscr{C}^{\mathscr{F}}$ is the exponential, $\mathfrak{X} \ni Z \mapsto \operatorname{Fun}(Z \times \mathscr{F}, \mathscr{C})$

A functor of \mathscr{F} -indexed **colimits** in \mathscr{C} is an internal left-adjoint $\underset{\longrightarrow}{\operatorname{colim}}_{\mathscr{F}}: \mathscr{C}^{\mathscr{F}} \to \mathscr{C}$ to Δ

Quotients of internal group actions

Any (∞, 1)-topos X has an object classifier Ω, such that hom(Z, Ω) ≃ (X_Z)[≃]
⇒ Ω is the core of an X-category U: Z ↦ X_Z, the universe
G a group in X ↔ U^{BG}(*) ≃ Fun(BG, U) ≃ U(BG) ≃ X_{/BG}
⇒ colim_{BG} is left-adjoint to (−) × BG: X_{/*} → X_{/BG}: quotient [−/G]

Upshot: The stack of shifted divisors as an internal colimit

Total space of line bundles

Internal functor Ω^{∞} : $\mathcal{B} \mathbb{G}_{m,X} = \mathcal{P}ic_X \to \mathcal{U}$ by:

 $\mathscr{P}ic_X(\mathcal{T}) = \{ \text{line bundles on } \mathcal{T} \} \ni \mathscr{L} \mapsto \Omega^{\infty} \mathscr{L} = \mathbb{V}_{\mathcal{T}}(\mathscr{L}) \in \mathfrak{dSt}_{/\mathcal{T}} = \mathscr{U}(\mathcal{T}) \}$

By before: $Cart_X \coloneqq \left[\mathbb{A}^1_X/\mathbb{G}_{\mathsf{m},X}\right] = \underset{\substack{\longrightarrow\\ \mathcal{P}ic_X}}{\operatorname{colim}} \Omega^{\infty}$

Upshot: The stack of shifted divisors as an internal colimit

Total space of line bundles

Internal functor Ω^{∞} : $\mathcal{B} \mathbb{G}_{m,X} = \mathcal{P}ic_X \to \mathcal{U}$ by:

 $\mathscr{P}ic_X(\mathcal{T}) = \{ \text{line bundles on } \mathcal{T} \} \ni \mathscr{L} \mapsto \Omega^{\infty} \mathscr{L} = \mathbb{V}_{\mathcal{T}}(\mathscr{L}) \in \mathfrak{dSt}_{/\mathcal{T}} = \mathscr{U}(\mathcal{T}) \}$

By before:
$$\operatorname{Cart}_X \coloneqq \left[\mathbb{A}^1_X/\mathbb{G}_{\mathsf{m},X}\right] = \operatorname{colim}_{\stackrel{\longrightarrow}{\mathscr{P}ie_X}} \Omega^{\infty}$$

Shifted version

$$\blacktriangleright \ \Omega^{\infty} \colon \mathscr{P}\!ic_X^{\dagger} \simeq \underline{\mathbb{Z}}_X \times \mathscr{P}\!ic_X \to \mathscr{U}, (n, \mathscr{L}) \mapsto \Omega^{\infty}(\mathscr{L}[n])$$

Upshot: The stack of shifted divisors as an internal colimit

Total space of line bundles

Internal functor Ω^{∞} : $\mathcal{B} \mathbb{G}_{m,X} = \mathfrak{Pic}_X \to \mathcal{U}$ by:

 $\mathscr{P}\!\mathit{ic}_X(\mathcal{T}) = \{ \text{line bundles on } \mathcal{T} \} \ni \mathscr{L} \mapsto \Omega^{\infty} \mathscr{L} = \mathbb{V}_{\mathcal{T}}(\mathscr{L}) \in \mathfrak{dSt}_{/\mathcal{T}} = \mathscr{U}(\mathcal{T})$

By before:
$$\operatorname{Cart}_X \coloneqq \left[\mathbb{A}^1_X/\mathbb{G}_{\mathsf{m},X}\right] = \operatorname{colim}_{\stackrel{\longrightarrow}{\mathscr{P}ie_X}} \Omega^{\infty}$$

Shifted version

$$\begin{array}{l} \blacktriangleright \ \Omega^{\infty} \colon \mathscr{P}ic_{X}^{\dagger} \simeq \underline{\mathbb{Z}}_{X} \times \mathscr{P}ic_{X} \to \mathscr{U}, (n, \mathscr{L}) \mapsto \Omega^{\infty}(\mathscr{L}[n]) \\ \blacktriangleright \ \mathscr{C}art_{X}^{\dagger} \coloneqq \operatornamewithlimits{colim}_{\mathscr{P}ic_{X}^{\dagger}} \Omega^{\infty} \qquad (\text{think } \operatornamewithlimits{colim}_{n \in \underline{\mathbb{Z}}_{X}} \operatornamewithlimits{colim}_{\mathbb{A}^{1} \in \mathbb{B} \, \mathbb{G}_{m}} \Omega^{\infty}(\mathbb{A}^{1}[n])) \end{array}$$

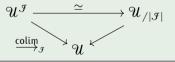
By "Fubini", we can also think of $\mathscr{Cart}^{\dagger}_X$ as $\left[\prod_{n \in \mathbb{Z}_X} \Omega^{\infty}(\mathbb{A}^1[n]) / \mathbb{G}_m \right]$ Total shift of $M \in \mathfrak{QCoh}(X)$: $\Omega^{\infty}_{gr}M = \prod_{n \in \mathbb{Z}} \Omega^{\infty}(M[n])$

By "Fubini", we can also think of
$$\operatorname{Cart}_X^{\dagger}$$
 as $\left[\prod_{n \in \mathbb{Z}_X} \Omega^{\infty}(\mathbb{A}^1[n]) / \mathbb{G}_m \right]$
Total shift of $M \in \operatorname{QCoh}(X)$: $\Omega_{\operatorname{gr}}^{\infty} M = \prod_{n \in \mathbb{Z}} \Omega^{\infty}(M[n])$

Interpretation of the total shift

▶ Give *M* chaotic \mathbb{Z} -grading: $(M^{chs})_n = M$ component $\forall n \in \mathbb{Z}$

Remark: Groupoid-indexed colimits as gradings:

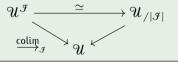


By "Fubini", we can also think of
$$\mathscr{Cart}_X^{\dagger}$$
 as $\left[\prod_{n \in \mathbb{Z}_X} \Omega^{\infty}(\mathbb{A}^1[n]) / \mathbb{G}_m\right]$
Total shift of $M \in \mathfrak{QCoh}(X)$: $\Omega_{gr}^{\infty}M = \prod_{n \in \mathbb{Z}} \Omega^{\infty}(M[n])$

Interpretation of the total shift

- ▶ Give *M* chaotic Z-grading: (*M*^{chs})_n = *M* component ∀*n* ∈ Z
 ▶ Shear the Z-graded object: (*P*^{shr})_n = *P_n*[*n*]
 ▶ Ω[∞]_{gr} *M* = (*M*^{chs})^{shr}

Remark: Groupoid-indexed colimits as gradings:

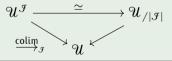


By "Fubini", we can also think of
$$\mathscr{Cart}_X^{\dagger}$$
 as $\left[\prod_{n \in \mathbb{Z}_X} \Omega^{\infty}(\mathbb{A}^1[n]) / \mathbb{G}_m\right]$
Total shift of $M \in \mathfrak{QCoh}(X)$: $\Omega_{gr}^{\infty}M = \prod_{n \in \mathbb{Z}} \Omega^{\infty}(M[n])$

Interpretation of the total shift

- ▶ Give *M* chaotic Z-grading: (*M*^{chs})_n = *M* component ∀*n* ∈ Z
 ▶ Shear the Z-graded object: (*P*^{shr})_n = *P_n*[*n*]
 ▶ Ω[∞]_{gr} *M* = (*M*^{chs})^{shr}

Remark: Groupoid-indexed colimits as gradings:



Problem: \mathbb{Z} -shearing is only \mathcal{E}_2 - but not \mathcal{E}_3 -monoidal over \mathbb{S} [Lurie]

Shift is an automorphism of $\mathfrak{QCoh}(X) = \Gamma(\mathfrak{QCoh}_X)$: monoidal functor $\mathbb{Z}_X \to \mathfrak{End}(\mathfrak{QCoh}_X)$

 $\blacktriangleright \ \mathbb{Z}$ is the free grouplike $\mathcal{E}_1\text{-monoid}$ on a object

Shift is an automorphism of $\mathfrak{QCoh}(X) = \Gamma(\mathfrak{QCoh}_X)$: monoidal functor $\mathbb{Z}_X \to \mathfrak{End}(\mathfrak{QCoh}_X)$

- $\blacktriangleright \ \mathbb{Z}$ is the free grouplike $\mathcal{E}_1\text{-monoid}$ on a object
- $\blacktriangleright\ \Omega^\infty \mathbb{S}$ is the free grouplike $\mathcal{E}_\infty\text{-monoid}$ on an object

Internal Eilenberg–Watts (almost) theorem

Equivalence of internal \mathcal{E}_1 -monoidal categories $\mathcal{E}nd^{ex}(\mathcal{QCoh}_X) \simeq \mathcal{QCoh}_X$

Shift is an automorphism of $\mathfrak{QCoh}(X) = \Gamma(\mathfrak{QCoh}_X)$: monoidal functor $\mathbb{Z}_X \to \mathfrak{End}(\mathfrak{QCoh}_X)$

- $\blacktriangleright \ \mathbb{Z}$ is the free grouplike $\mathcal{E}_1\text{-monoid}$ on a object
- $\blacktriangleright\ \Omega^\infty \mathbb{S}$ is the free grouplike $\mathcal{E}_\infty\text{-monoid}$ on an object

Internal Eilenberg–Watts (almost) theorem

Equivalence of internal \mathcal{E}_1 -monoidal categories $\mathcal{E}nd^{ex}(\mathbb{QCoh}_X) \simeq \mathbb{QCoh}_X$

 \implies $\mathscr{E}nd(\mathscr{Q}\mathscr{C}oh_X)$ acquires an \mathscr{E}_{∞} refinement

Corollary

Shifting extends to an S-automorphism $\underline{\Omega^{\infty}}_{X} \to \mathscr{E}nd\left(\mathbb{Q}\mathscr{C}o\hbar_{X} \right)^{\times}$

Shift is an automorphism of $\mathfrak{QCoh}(X) = \Gamma(\mathfrak{QCoh}_X)$: monoidal functor $\mathbb{Z}_X \to \mathfrak{End}(\mathfrak{QCoh}_X)$

- $\triangleright \mathbb{Z}$ is the free grouplike \mathcal{E}_1 -monoid on a object
- $\blacktriangleright\ \Omega^\infty \mathbb{S}$ is the free grouplike $\mathcal{E}_\infty\text{-monoid}$ on an object

Internal Eilenberg–Watts (almost) theorem

Equivalence of internal \mathcal{E}_1 -monoidal categories $\mathscr{E}nd^{ex}(\mathscr{QCoh}_X) \simeq \mathscr{QCoh}_X$

 \implies $\mathscr{E}nd(\mathscr{Q}\mathscr{C}oh_X)$ acquires an \mathscr{E}_∞ refinement

Corollary

Shifting extends to an S-automorphism $\underline{\Omega^{\infty}}_{X} \to \mathscr{E}nd(\mathfrak{QCoh}_{X})^{\times}$

 $\mathbb{S}\text{-graded }\Omega^{\infty}_{\$}M = \coprod_{n \in \Omega^{\infty} \mathbb{S}} \Omega^{\infty}(M[n]) \text{ [Sagave-Schlichtkrull], and } \mathscr{P}ic^{\$}_{X} = \underline{\Omega^{\infty}} \mathbb{S}_{X} \times \mathscr{B} \mathbb{G}_{m,X}$

Shift is an automorphism of $\mathfrak{QCoh}(X) = \Gamma(\mathfrak{QCoh}_X)$: monoidal functor $\mathbb{Z}_X \to \mathfrak{End}(\mathfrak{QCoh}_X)$

- ▶ \mathbb{Z} is the free grouplike \mathcal{E}_1 -monoid on a object
- $\blacktriangleright\ \Omega^\infty \mathbb{S}$ is the free grouplike $\mathcal{E}_\infty\text{-monoid}$ on an object

Internal Eilenberg–Watts (almost) theorem

Equivalence of internal \mathcal{E}_1 -monoidal categories $\mathscr{E}nd^{ex}(\mathscr{QCoh}_X) \simeq \mathscr{QCoh}_X$

 \implies $\mathscr{E}nd(\mathscr{Q}\mathscr{C}oh_X)$ acquires an \mathscr{E}_∞ refinement

Corollary

Shifting extends to an S-automorphism $\underline{\Omega^{\infty}}_{X} \to \mathscr{E}nd(\mathfrak{Ceoh}_{X})^{\times}$

$$\begin{split} & \mathbb{S}\text{-graded } \Omega^{\infty}_{\$} M = \coprod_{n \in \Omega^{\infty} \$} \Omega^{\infty}(M[n]) \; [\text{Sagave-Schlichtkrull}], \; \text{and} \; \mathscr{P}ic_X^{\$} = \underline{\Omega^{\infty} \$}_X \times \mathscr{B} \; \mathbb{G}_{\mathsf{m},X} \\ & \Longrightarrow \; \mathscr{C}art_X^{\$} = \operatornamewithlimits{colim}_{\mathscr{P}ic_X^{\$}} \Omega^{\infty} \simeq \left[\Omega^{\infty}_{\$} \mathbb{A}^1_X / \mathbb{G}_{\mathsf{m},X}\right] \end{split}$$

Presentable stable (∞, n) -categories [Stefanich]

- ▶ A (presentable) stable $(\infty, 0)$ -category is a spectrum
- ▶ A presentable stable $(\infty, n + 1)$ -category is a compact object in \mathfrak{St}_n - \mathfrak{Cat}

Presentable stable (∞, n) -categories [Stefanich]

- ▶ A (presentable) stable $(\infty, 0)$ -category is a spectrum
- ▶ A presentable stable $(\infty, n + 1)$ -category is a compact object in \mathfrak{St}_n - \mathfrak{Cat}

Iterated modules

 $A \ \mathcal{E}_{\infty}$ -ring $\rightsquigarrow A-\mathfrak{Mod}_n \coloneqq (A-\mathfrak{Mod}_{n-1})-\mathfrak{Mod}$ an \mathcal{E}_{∞} -monoidal stable (∞, n) -cat

Presentable stable (∞, n) -categories [Stefanich]

- ▶ A (presentable) stable $(\infty, 0)$ -category is a spectrum
- ▶ A presentable stable $(\infty, n + 1)$ -category is a compact object in \mathfrak{St}_n - \mathfrak{Cat}

Iterated modules

 $A \ \mathcal{E}_{\infty}\text{-ring} \rightsquigarrow \quad A-\mathfrak{Mod}_n \coloneqq (A-\mathfrak{Mod}_{n-1})-\mathfrak{Mod} \ \text{an} \ \mathcal{E}_{\infty}\text{-monoidal stable} \ (\infty, n)\text{-cat}$

Lemma [Stefanich]

 $A\mapsto A-\mathfrak{Mod}_n$ satisfies étale descent \rightsquigarrow sheaf of (∞, n) -cats \mathbb{QCoh}_n

We will define $\mathfrak{Br}_n^{\$} = \mathfrak{QCoh}_{n+1}^{\times}$

Presentable stable (∞, n) -categories [Stefanich]

- ▶ A (presentable) stable $(\infty, 0)$ -category is a spectrum
- ▶ A presentable stable $(\infty, n + 1)$ -category is a compact object in \mathfrak{St}_n - \mathfrak{Cat}

Iterated modules

 $A \ \mathcal{E}_{\infty}$ -ring $\rightsquigarrow A-\mathfrak{Mod}_n \coloneqq (A-\mathfrak{Mod}_{n-1})-\mathfrak{Mod}$ an \mathcal{E}_{∞} -monoidal stable (∞, n) -cat

Lemma [Stefanich]

 $A \mapsto A-\mathfrak{Mod}_n$ satisfies étale descent \rightsquigarrow sheaf of (∞, n) -cats \mathbb{QCoh}_n

We will define $\mathfrak{Br}_n^{\$} = \mathfrak{QCoh}_{n+1}^{\times}$ (Conjecture: It recovers Haugseng's Brauer groups)

Low ns: $\mathfrak{Br}_{-1}^{\$} = \mathbb{G}_{\mathfrak{m}}$ (connectively), $\mathfrak{Br}_{0}^{\$} = \mathfrak{Pic}^{\$}$, and $\mathfrak{Br}_{1}^{\$}$ is the extended Brauer stack

Higher affines

n-categorical structure sheaf $\mathfrak{COh}_n \in \mathfrak{QCoh}_{n+1}(X)$, with $\Gamma(X, \mathfrak{COh}_n) = \mathfrak{QCoh}_n(X)$

n-affine stacks [Stefanich, Gaitsgory for n = 1]

A derived stack X is *n*-affine if $\Gamma(X, -)$: $\operatorname{QCol}_{n+1}(X) \xrightarrow{\simeq} \operatorname{QCol}_n(X)$ -Mod

Higher affines

n-categorical structure sheaf $\mathfrak{QCoh}_n \in \mathfrak{QCoh}_{n+1}(X)$, with $\Gamma(X, \mathfrak{QCoh}_n) = \mathfrak{QCoh}_n(X)$

n-affine stacks [Stefanich, Gaitsgory for n = 1]

A derived stack X is *n*-affine if $\Gamma(X,-)\colon \mathfrak{QCoh}_{n+1}(X) \xrightarrow{\simeq} \mathfrak{QCoh}_n(X)$ -Mod

n-categorical affines

- An *n*-categorical ring is a symmetric monoidal stable (∞, n) -category
- $(\infty, n+1)$ -category of *n*-affines $\operatorname{Aff}_n = \operatorname{Ring}_n^{\operatorname{op}}$

n-categorical stacks: functors $Aff_n \to (\infty, n)$ -Cat with *n*-categorical descent

Higher affines

n-categorical structure sheaf $\mathfrak{QCoh}_n \in \mathfrak{QCoh}_{n+1}(X)$, with $\Gamma(X, \mathfrak{QCoh}_n) = \mathfrak{QCoh}_n(X)$

n-affine stacks [Stefanich, Gaitsgory for n = 1]

A derived stack X is *n*-affine if $\Gamma(X, -) : \mathfrak{QCoh}_{n+1}(X) \xrightarrow{\simeq} \mathfrak{QCoh}_n(X)$ -Mod

n-categorical affines

- An *n*-categorical ring is a symmetric monoidal stable (∞, n) -category
- $(\infty, n+1)$ -category of *n*-affines $\operatorname{Aff}_n = \operatorname{Ring}_n^{\operatorname{op}}$

n-categorical stacks: functors $Aff_n \to (\infty, n)$ -Cat with *n*-categorical descent

Embedding $i_{n,k}$: $\operatorname{Aff}_n \hookrightarrow \operatorname{Aff}_{n+k}$, $A \mapsto A \operatorname{-Mod}_k$ inducing $i_{n,k}^*$: $(n+k) \operatorname{-bSt} \to n \operatorname{-bSt}$

A derived stack is *n*-affine iff it is of the form $i_{0,n}^* \operatorname{Spec}(A)$ for A an *n*-ring

Higher-categorical logarithmic structures

▶ In the $(\infty, n+1)$ -topos $n-\mathfrak{dSt}_{/X}$, internal *n*-functor

 $\tau \colon \mathfrak{Br}^{\$}_n \to \mathcal{U} \quad (\text{underlying } (\infty, n)\text{-category of a stable } (\infty, n)\text{-cat})$

► *n*-categorical (extended) Cartier stack: $Cart_n^{\$} = \operatorname{colim}_{\mathfrak{M}r_n^{\$}} \tau$

Higher-categorical logarithmic structures

▶ In the $(\infty, n+1)$ -topos $n-\mathfrak{bSt}_{/X}$, internal *n*-functor

 $\tau : \mathfrak{Br}_n^{\$} \to \mathcal{U}$ (underlying (∞, n) -category of a stable (∞, n) -cat)

► *n*-categorical (extended) Cartier stack:
$$Cart_n^{\$} = \operatorname{colim}_{\mathfrak{B}r_n^{\$}} \tau$$

Alternatively: $\Omega^{\infty}_{\$} \colon \mathfrak{Sp} \to \infty\text{-}\mathfrak{Grpb}$ (symmetric) monoidal

 $\implies (\Omega^\infty_{\$})_{*,\ldots,*} \colon \mathfrak{Sp-Cat-\cdots-Cat} \to \infty - \mathfrak{Grpb-Cat-\cdots-Cat}$

Higher-categorical logarithmic structures

▶ In the $(\infty, n+1)$ -topos $n-\mathfrak{bSt}_{/X}$, internal *n*-functor

 $\tau : \mathfrak{Br}^{\$}_n \to \mathcal{U}$ (underlying (∞, n) -category of a stable (∞, n) -cat)

► *n*-categorical (extended) Cartier stack:
$$Cart_n^{\$} = \operatorname{colim}_{\mathfrak{B}r_n^{\$}} \tau$$

Alternatively: $\Omega^{\infty}_{s} \colon \mathfrak{Sp} \to \infty - \mathfrak{Grpb}$ (symmetric) monoidal

$$\implies (\Omega^{\infty}_{\$})_{\ast,...,\ast} \colon \mathfrak{Sp}-\mathfrak{Cat}-\cdots-\mathfrak{Cat} \rightarrow \infty-\mathfrak{Grp}\mathfrak{d}-\mathfrak{Cat}-\cdots-\mathfrak{Cat}$$

Expectations

The infinite root stack of an n-categorical log structure will be an n-stack

For *n*-log structures on curves, recover higher gerbes $\mathcal{B}^n \mu_{\infty}$